
Investigation of Human-Robot Interface Performance in Household

Environments
Sven Cremer*a, Fahad Mirzaa, Anthony Hingeleya, Rommel Alonzoa, Yathartha Tuladhara, Dan O.

Popab

aNext Generation Systems, University of Texas at Arlington, Arlington, Texas 76010;
bDept. of Electrical Engineering, University of Louisville, Louisville, KY 40292 USA

ABSTRACT

Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are

highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future

skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to

intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces

(HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance

of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several

household task.

Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form

of piezoresistive pressure sensors arrays. Mobile manipulation experiments are performed with a sensorized KUKA

youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involve

navigation and manipulation of objects in household environments. Performance metrics include time for task

completion and position accuracy.

Keywords: Assistive robotics, human-machine interfaces, mobile manipulation

1. INTRODUCTION

Robotics is currently in its 3rd phase of development. The late 1970s saw the rise of unintelligent, stationary industrial

robots. During the 1990s, progress was made in mobility, intelligence, and cooperation to develop “personal” robots in

areas such as research, education, and entertainment [1]. Today is the generation of “ubiquitous” robots that will support

humans in everyday life. Unlike industrial robots, future co-robots will share their working space with humans and work

in household environments. These assistive devices do not necessarily have to be fully autonomous. It has been shown

that a human-robot pair can outperform either a human or robot working alone [2].

Therefore, intuitive human-robot interfaces will play a crucial role. Non-expert user must be able to interact and

communicate with the robot, which may involve speech, gesture, haptic displays, etc. [3]. Interaction can also be

physical, for example a robot can learn a new task from a novice operator via kinesthetic teaching, where the user

manually pushes and pulls the manipulator to complete a task [4].

Since physical contact may occur, human-robot interfaces will also play a key role in safety. Safety can be divided into a

physical and behavior aspect [5]. When physical contact occurs, the control architecture can limit joint torques and

velocities, and take advantage of passive compliance. There are adaptive schemes that can compensate for unknown

parameters and disturbances while guaranteeing robust and stable control [6]. In our recent work, we validated a novel

neuroadaptive framework that improved physical HRI [7, 8]. These methods use single F/T (force/torque) sensors to

estimate the force applied by a human on the robot end-effector. A promising technology is robot skin, which equips the

robot with touch and allows precise localization of multiple contact forces [9]. While whole-body, human-like skin yet

has to be realized, there already exists pressure sensitive piezo-resistive “taxel” arrays encapsulated in flexible silicone

substrates [10].

*{sven.cremer,fahad.mirza34,anthony.hingeley,rommel.alonzo,yathartha.tuladhar}@mavs.uta.edu,

dan.popa@louisville.edu; www.uta.edu/ngs

For behavior safety, the robot takes multi-modal cues such as facial expression and body pose to determine human

intent. This allows the robot to align its goals with the operator, plan ahead, and adjust its behavior. For example, if a

collision is anticipated or a child interacts with the robot, the control scheme could increase its compliance. Feedback

from the operator could also allow the robot behave more human-like, making the interface simpler to understand and

more intuitive for the operator [11].

The intuitive and safe human-robot interfaces must be facilitated by multi-modal sensor data. The robot can perceive and

understand its environment through camera images that are then processed by vision algorithms. For example, the

OpenCV library implements several real-time computer vision functionalities, including people detection and face

tracking [12]. Additional information can be gained from depth: RGB-D cameras such as the Microsoft Kinect or Asus

Xtion have become de-facto standard in robotics [13]. Laser scanners usually provide 2D depth information and are

commonly used for mobile navigation. Sonar or ultrasonic sensors are less accurate but relative inexpensive range-

finders, and have been deployed on co-robots such as Baxter to detect human presence [14]. Another alternative are

thermal sensors, which can detect radiated heat or far-infrared rays from nearby humans. In addition to low cost,

processing infrared data is faster compared with image processing to detect humans.

In this paper, a standard robot platform was modified to investigate the performance of several HMIs in a household

environment, continuing the work described in [15]. The KUKA youBot, which is commonly used in academia, was

transitioned from the “personal” to “ubiquitous” generation of robots by performing several hardware upgrades. The

platform was sensorized by installing a RGB-D camera for object and human detection, a laser scanner for fully and

semi-autonomous navigation as well as collision detection, robot skin patches consisting of piezo-electric pressure

sensors for physical interaction, and thermal sensors to detect human presence. A National Instruments roboRIO was

added to provide additional input/output ports and a software architecture was developed to process the data. Networking

was improved to allow remote control via a tablet interface and assisted joystick teleoperation. As such, the contribution

of this paper is how to sensorize a standard robot platform (both hardware and software) for human-robot interfaces and

their expected performance in a household environment.

In the following section, we describe the robot platform and how it was upgraded to meet the HMI requirements. In

Section 3, we discuss the sensors used for the multi-modal interfaces and the software architecture in Section 4. The

experimental setup is presented in Section 5 and the results in Section 6. Finally, Section 7 concludes the paper and

postulates future work.

2. HARDWARE PLATFORM

In this section we describe the robot platform and the necessary hardware sensors and interfaces needed for

teleoperation.

The automation company KUKA specifically developed the youBot as a research and application platform for mobile

robotics [16]. It has a five degrees of freedoms (DOF) manipulator with a height of 655mm and a workspace of 0.513m3.

The arm can lift a payload up to 0.5kg and has a position repeatability of 0.1mm. Grasping can be performed with a two-

finger gripper that is being powered by 2 independent stepper motors and has a range of 70 mm.

The arm is mounted on a omni-directional base of dimension 580mm (length) by 376mm (width). The four Mecanum

wheels allow movement in any direction (x,y) at any orientation (). It can reach velocities up to 0.8m/s and carry a

payload of 20kg. The mobile base houses a rechargeable battery which allows a runtime of approximately 90 minutes.

An onboard mini PC (Intel Atom Dual Core CPU, 2GB RAM) runs the Linux-based operating system Ubuntu. The

platform components rely on EtherCAT communication with a 1ms, real-time cycle.

A remote workstation can be connected to the robot via Ethernet cable. This is suitable for running computationally

demanding algorithms and heavy graphics processing that would slow down the onboard PC. To create an untethered

setup, our first upgrade consisted of mounting a wireless router (ASUS RT-N66U Dual-Band Wireless-N900 Gigabit

Router) on top of the base. This router is connected to the onboard PC via Ethernet connection, and acts as a bridge to

transmit data to a remote workstation (Fig. 1). This allows an operator to run and troubleshooting processes remotely,

view and collect live data, and visualize the robot state in a graphics program. In addition, the youBot WiFi network can

be used to connect interface devices such as tablets, phones, or laptops.

The additional sensors for the HMI require Input/Output (I/O) ports for signal acquisition, conditioning, and networking.

The National Instrument roboRIO is an advanced robotics controller that features several built-in ports for “I2C, SPI,

RS232, USB, Ethernet, PWM, and relays” [17]. Released in 2015, it is part of the reconfigurable I/O (RIO) family and

use the Xilinx Zynq chipset. It has a reconfigurable FPGA and is powered by a 667 MHz dual-core Real-Time processor.

 Figure 1. Communication diagram for sensor data acquisition and wireless setup between youBot and remote workstation.

3. SENSORS FOR HMI

3.1 Laser scanner

A laser scanning rangefinder was installed at the front side of the youBot base to detect obstacles. The sensor data can be

used for autonomous navigation and assistive teleoperation. We used the Hokuyo URG-04LX-UG-01 model, which has

a 240° field of view and a measurements distance of 4m [18].

3.2 Robot Skin

For physical interaction, the youBot end-effector link was outfitted with four skin patches consisting of pressure sensors

embedded in P10 polymer as shown in Fig. 2. The Tekscan Flexiforce thin-film sensors are ideal for measuring force

between two surfaces. They are cost effective and durable with good sensor characteristics: linearity error within 3%,

hysteresis less than 4.5%, drift less than 5%, and low temperature sensitivity (0.36% per C). The maximum response

time is 5 sec and they handle up to 100lbs (445N). The active sensing area is 9.53mm diameter.

The particular sensors used are piezoresistive: as force increases the resistance decreases from infinity to approximately

300k. A voltage divider circuit with an emitter buffer was designed to measure human forces up to 50lbs (222N). The

circuit was implemented on a custom data acquisition board (or MicroBoard), which conditions the pressure data from

several sensors (or taxels). The results are read by the roboRIO using its analog input ports.

 Figure 2. Robot skin patch placement on the KUKA youBot manipulator [16].

3.3 Thermal sensors

Human presence can be detected by using cameras and computer vision algorithms. A simpler and more cost effective

approach involves thermal sensors, which detect radiated heat or far-infrared rays of an object. Hence, they are not

affected by different lightning conditions like conventional cameras and simple thresholding can be used for detection.

The Omron’s MEMS thermal sensor (D6T-44L) consists of a MEMS thermopile sensor chip covered with a silicon lens

[18]. The chip measures an electromotive force and an embedded circuit converts the analog signals to digital

temperature values. In contrast to conventional pyroelectric sensors, Omron’s sensor does not measure a change in signal

and continually detects the far-infrared ray of an object. Hence, the sensor is able able to catch a signal of a moving as

well as stationary person.

A custom box with three thermal sensors was mounted on the end-effector just below the two finger-gripper. The sensor

itself outputs a 4x4 pixel array and has a view angle of 45̊ [18]. With three sensors, 4x12 pixels cover approximately 120̊

with some overlapping. The hardware including thermal sensors and wiring were encased in a 3D printed box as shown

in Fig. 3. The measured values are transmitted through an I2C bus to the roboRIO.

Figure 3. The detection area of the Omron D6T-44L [18]. The 3D printed box and circuitry for three thermal sensors.

4. SOFTWARE ARCHITECTURE

4.1 Robot Operation System

The KUKA youBot runs the linux-based operating system Ubuntu 12.04. The platform is controlled with the open-

source Robot Operating System (ROS), a software framework originally developed by Stanford Artificial Intelligence

Laboratory in 2007 [19]. ROS has become a de-facto standard in robotics and there is a large collection of software

packages developed by the community. Since ROS is programming language and hardware agnostic, these packages can

easily be re-used on different platforms. Programs are executed as independent ROS nodes and data is transmitted via

ROS messages. This distributed architecture allows several components to run simultaneously, for example sensor data

processing, navigation, and perception.

In this spirit, we developed a multi-layered, ROS-based architecture to allow robot autonomy as well as user intervention

via several HMIs such as tablet apps or pressure sensors (Fig. 4). Several stand-alone ROS packages were developed,

with different functionalities for navigation and manipulation as described in Table 1. The program flow is determined

by a cortex node which acts as layer between the interfaces and control modules. It contains a state machine which

utilize ROS topics or services to calls other ROS nodes that then executes the necessary code. If anything fails, the

cortex node runs contingency plans and is able to restart faulty ROS nodes. This also simplifies data flow making it

easier to debug and capture data.

 Figure 4. Software architecture.

Table 1. Overview of the developed ROS packages.

ROS package Description

youbot_cortex Contains state machine nodes which acts as a layer between the data received from the tablet app

and the actual arm controllers. It sends service requests to enable/disable different control modes,

joints, and sensors.

cortex_msgs Defines custom ROS messages and services.

serial_io Reads data from roboRIO via a serial communications channel and publishes it to ROS topics.

youbot_force_sensors Subscribes to force data and compute the command velocities for the base movement. KDL

(Kinematics and Dynamics library) is used for 3D frame and vector transformations.

youbot_ir_sensors Processes thermal sensor data (filtering and thresholding) to control the gripper.

youbot_description Contains the youBot robot model.

youbot_navigation Utilities for mapping, localization, and path planning.

youbot_arm_controllers Send actual position commands to the Youbot motors using different control algorithms

(individual and combined joint control).

youbot_cartesian Cartesian arm controller using the motion planning software MoveIt! [20].

4.2 Tablet Interface

A youBot tablet application was developed using ROSJava [21] to allow users to control the platform with an easy-to-

use GUI interface. Figure 5. Tablet interface for controlling the youBot.The app is split up into 3 different classes:

ViewController, NodePublisher and the VirtualDivet. The ViewController connects the GUI interface (buttons, toggle

buttons, switches, text) to backend code. Using ROS messages, the NodePublisher communicates user intent to the

cortex program which then initiates the robot movement. The VirtualDivet class implements the touch-screen joystick in

the lower right hand corner. It allows the user to move around a divet inside a circular area, where the off-center distance

produces velocity commands between 0 and 100%.

Figure 5 show the layout on a Nexus 10 Android tablet. The top left corner displays the tablet orientation, i.e. the pitch

and roll from the gyroscope and the yaw relative to earth from the magnetic compass. The active control mode can either

be individual or combined joint control. Joint control mode allows the selection of individual joints which then can be

moved by tilting the tablet. The joint velocity is proportional to the pitch of the tablet. In combined joint control, several

joints are moved together to move the end-effector in an arc. Joint limits prevent the user from hitting the floor or robot.

The Cartesian position of the end-effector can be controlled with buttons in the upper right corner. Vertical Cartesian

control moves the end-effector along the y-axis of the base frame. Finally, there are switches for activating different

interfaces such as the thermal and pressure sensors. The grippers switch opens or closes the two-finger pincher. The base

joystick toggle enables the virtual joystick, which moves omnidirectional base of the robot platform.

 Figure 5. Tablet interface for controlling the youBot.

4.3 RoboRio Software

The roboRIO was programmed using the National Instruments LabVIEW. The code is executed in a real-time loop,

where pressure sensors are read every 1ms using the analog input ports. The infrared sensors generate data every 30ms

and use the I2C interface. After being captured, the data is relayed via USB to the youBot using the RS232

communication protocol. Collecting sensor information and communicating with ROS are parallel tasks, made possible

by the multicore processors on the roboRIO. This way the ROS nodes can access the sensor data at approximately the

same rate: 1000Hz for pressure sensor and 33Hz for thermal data.

5. DESCRIPTION OF EXPERIMENTS

Experiments were conducted to test the functionality of the implemented hardware and performance of the proposed

HMI schemes. The tasks involved object pick-and-place using the tablet interface and pressure sensors, as well as

autonomous navigation. The primary objective was to measure the difference in completion time and accuracy of path

trajectory for expert and novice users. Non-expert users are defined as those who had no prior experience with the tablet

application, the robot, or its functionality. Both types of users were instructed with a brief overview of the desired tasks

for completion for the desired motion. Non-expert users were given a brief introduction to the application and the

buttons which control the interface position of the base and motion of the arm. To determine the trajectory error, the

youBot was localized using odometry and laser scanner data.

 Figure 6. Pick and place experiment on the laboratory floor.

5.1 Pick and Place

In the pick and place task, a user was asked to move several objects between waypoints with the KUKA youBot. To

create a rigorous method of testing, the waypoints were marked on the floor as shown in Fig. 6. The path involves

straight and diagonal movements, and the distance between each point was varied: 3.05m from point A to point B, 2.76m

from point B to point C, 3.68m from point C to point D, 2.80m point D to point E, and 3.07m from point E to point F.

Different interfaces were tested to compare the accuracy and completion time of physical user guidance and tablet

teleoperation. Both expert and novice users were asked to pick up 5 objects in 6 trials. This was repeated for two types of

interfaces: 1) teleoperation via tablet and 2) direct physical interaction (mannequin mode) via the skin patches.

In Teleoperation mode, the user was required to accomplish the following tasks:

1. Pick up initial object

2. Transport object to waypoint

3. Place object within 2-3 inches from waypoint marker

4. Pick up next object

5. Proceed to next waypoint

6. Deliver final waypoint item into a bin

The motion of the base is controlled by the divet, while the arm can be controlled by joint or Cartesian modes. The user

can also open and close the grippers using the button located on the tablet application.

In mannequin mode the tasks were as follows:

1. Pick up initial object

2. Apply a force to the desired direction pressure sensors

3. Guide Youbot to waypoints

4. Use the tablet to control the arm using combined joint angles.

5. Control Gripper grasp using tablet interface

6. Move to next waypoint and deliver current object in close proximity to next target (2-3 inches apart).

7. Final waypoint: object in grasp must be left at final location.

The user must press the pressure sensors to control the robot base to navigate the outlined path to grasp the desired

objects. The user must place the object within the grasp as close as possible to the next target (2-3 inches). The reasoning

for this method is for stating that although the system may be slower, the accuracy is more precise than that of the tablet

interface.

5.2 Path Guidance

In addition to pick and place experiments, in which the user guided the robot by observation, we also carried out several

user experiments using the autonomous navigation and obstacle avoidance capabilities of the youBot. For autonomous

navigation the youBot recieved goal commands via the ROS Visualization (RViz) interface shown in Fig. 7. This

software suite provides the user with a predefined map of the location and obstacle detection marked in white. In the

map input via RViz the robot used the onboard LIDAR to map the current location in the room and obstacles

encountered that might come within its path. The path taken is provided by the user input in RViz via drag and drop

mouse commands and transmitted to the Youbot. The local Youbot controller determines whether or not an obstacle is in

the path and will avoid the obstacle using potential field method.

 Figure 7. RViz interface showing the location of the youBot.

6. RESULTS

6.1 Completion times

The timed trial data for each user was tabulated below for a few expert and non-expert users. In teleoperation mode, the

common task completion time for an experienced user was 2.5-3 minutes. However, the non-expert users took longer,

between 5.7-7 minutes to complete the desired tasks. The time difference for both non-users and expert users required to

operate the robot with the two different interfaces is minimal. The disparity in time between users may be attributed to

individual skill level of the person. Experimental results and tabulated completion times are shown in Table 2 and Fig. 8.

Table 2. Task completion time (in seconds) for expert and novice users of the tablet and mannequin interfaces. The mean

and standard deviation (STD) is computed for 6 trials.

Interface Expert user 1 Expert user 2 Novice user 1 Novice user 2

Tablet

175 188 395 368

158 174 388 343

162 159 382 340

153 141 370 348

148 139 372 330

178 181 409 398

Mean 162 164 386 355

STD 12.0 20.7 14.7 24.7

Mannequin

169 176 401 382

171 159 402 389

173 170 393 381

166 162 399 395

159 160 383 346

171 169 401 389

Mean 168 166 397 380

STD 5.1 6.7 7.4 17.6

Expert user Novice user
1 2 1 2

C
o
m

p
le

ti
o

n
 t

im
e

 [
s
e

c
]

100

150

200

250

300

350

400

450

Tablet
Mannequin

 Figure 8. Error plot showing completion times for different users.

6.2 Guidance accuracy

In addition to completion times, we also recorded the location information during interaction with users. The positions of

the robot during experiments were updated with respect to the room using the LIDAR sensor and internal odometry.

Two expert and two non-expert users were asked to follow a taped path on the lab floor, and each experiment was

repeated five times. The figures below summarize the trajectories obtained via manikin and tablet control, respectively.

By general inspection of these graphs, one can infer that the manikin mode is more accurate than teleoperation with a

tablet, and that the differences between expert and non-expert users are small.

 Figure 9. Youbot Cartesian position plots during task execution via mannequin control showing x,y robot coordinates on lab floor

in meters for five trials with both expert and non-expert users.

 Figure 10. Youbot Cartesian position plots during task execution via tablet control, showing x,y robot coordinates on lab floor in

meters for five trials with both expert and non-expert users.

6.3 Autonomous Navigation

Another set of experiments was conducted using the robot autonomous navigation controller, by pointing and clicking

between waypoints along a trajectory. In one set of trials, the robot had to move around an obstacle placed in its path,

while in another, the robot moved between two successive waypoints in a sharp right corner. The results depicted in the

figure below show that in both cases, the resulting trajectories are not qualitatively more accurate than the ones obtained

using manikin mode guidance.

 Figure 11. Youbot Cartesian position plots during task execution via autonomous navigation, showing x,y robot coordinates on lab

floor in meters for trials involving obstacle avoidance (left) and waypoint navigation with a sharp turn (right).

7. CONCLUSION

In this paper the Kuka youBot mobile manipulator was sensorized for user operation via a Nexus 10 tablet, physical

interaction, and gesture. a LIDAR unit, pressure and IR sensors consistent with robotic skin. System integration was

accomplished through the addition of a roboRIO controller and computing infrastructure based on the Robot Operating

System (ROS). After the HMI and sensor upgrades, the robot can be guided by users via teleoperation with a tablet,

direct physical guidance, as well as through a point and click graphical GUI. We demonstrated basic capabilities and

acquired data from a few users, which will pave the way for larger experimental studies in the future. Several pick and

place tasks for objects placed on the lab floor were completed by two users familiar with the system (“experts”), and two

users not familiar with the system (“non-expert”). The results indicate that:

1. The physical interaction (or mannequin) guidance results in the most accurate robot trajectories for both expert

and non-expert users. As a result, this interface is intuitive to use in precision guiding tasks.

2. Tablet teleoperation and mannequin guidance result in similar task completion times. Expert users can complete

pick and place manipulation and mobility tasks significantly faster than non-expert users. More research is

necessary to reduce training time.

3. The autonomous point and click interface had the shortest path time for traversing free and obstacle-filled

environments, but it is less accurate than manikin guidance. This interface may be very useful if a map of the

environment is available.

ACKNOWLEDGEMENTS

This research was supported by National Science Foundation Grants NRI-1208623 and BIC-1261005720, and Qinetiq-

North America Corporation.

REFERENCES

[1] P. Kopacek, “Development trends in robotics,” e i Elektrotechnik und Informationstechnik, 130, 42–47 (2013).

[2] H. Ding, M. Schipper, and B. Matthias, “Optimized task distribution for industrial assembly in mixed human-robot

environments - Case study on IO module assembly,” IEEE International Conference on Automation Science and

Engineering (CASE), 19–24 (2014).

[3] K. Dautenhahn and J. Saunders, [New Frontiers in Human-robot Interaction], John Benjamins Publishing Company,

Philadelphia, (2011).

[4] S. Cremer, M. Middleton, and D. O. Popa, “Implementation of advanced manipulation tasks on humanoids through

kinesthetic teaching,” Proc. of the 7th International Conference on PErvasive Technologies Related to Assistive

Environments (PETRA), 1–6 (2014).

[5] G. Herrmann and C. Melhuish, “Towards Safety in Human Robot Interaction,” Int. J. Soc. Robot., 2, 217–219

(2010).

[6] F. L. Lewis, D. M. Dawson, and C. T. Abdallah, “Robot Manipulator Control,” Theory Pract., 656–661 (2004).

[7] I. Ranatunga, S. Cremer, F. L. Lewis, and D. O. Popa, “Neuroadaptive Control for Safe Robots in Human

Environments: A Case Study,” IEEE International Conference on Automation Science and Engineering (CASE),

(2015).

[8] I. Ranatunga, S. Cremer, D. O. Popa, and F. L. Lewis, “Intent aware adaptive admittance control for physical

Human-Robot Interaction,” IEEE International Conference on Robotics and Automation (ICRA), 5635–5640

(2015).

[9] B. D. Argall and A. G. Billard, “A survey of Tactile Human-Robot Interactions,” Robotics and Autonomous

Systems, 58, 1159–1176 (2010).

[10] C. Nothnagle, J. R. Baptist, J. Sanford, W. H. Lee, D. O. Popa, and M. B. J. Wijesundara, “EHD printing of

PEDOT: PSS inks for fabricating pressure and strain sensor arrays on flexible substrates,” Next-Generation

Robotics II; and Machine Intelligence and Bio-inspired Computation: Theory and Applications IX, 9494, 949403

(2015).

[11] A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of physical human–robot interaction,” Mech.

Mach. Theory, 43, 253–270 (2008).

[12] G. Bradski and A. Kaehler, [Learning OpenCV: Computer Vision with the OpenCV Library], O'Reilly Media,

(2008).

[13] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D Mapping : Using Depth Cameras for Dense 3D

Modeling of Indoor Environments,” Int. J. Rob. Res., 31, 647–663 (2012).

[14] C. Fitzgerald, “Developing baxter,” IEEE Conference on Technologies for Practical Robot Applications (TePRA),

(2013).

[15] R. Alonzo, S. Cremer, F. Mirza, S. Gowda, L. Mastromoro, and D. O. Popa, “Multi-modal sensor and HMI

integration with applications in personal robotics,” Next-Generation Robotics II; and Machine Intelligence and Bio-

inspired Computation: Theory and Applications IX, 8 (2015).

[16] “KUKA youBot User Manual,” 6 December 2012, ftp://ftp.youbot-store.com/manuals/KUKA-

youBot_UserManual.pdf (5 March 2016).

[17] “NI roboRIO – RIO device for Robotics,” 1 July 2015, http://www.ni.com/pdf/manuals/375274a.pdf (5 March

2016).

[18] “D6T MEMS Thermal Sensors,” 31 August 2012, http://www.omron.com/ecb/products/sensor/11/d6t.html (5

March 2016).

[19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Mg, “ROS: an open-

source Robot Operating System,” ICRA Workshop on Open Source Software, (2009).

[20] I. A. Sucan and S. Chitta, “MoveIt!”, http://moveit.ros.org (5 March 2016).

[21] “ROSJava,” 1 March 2015, http://wiki.ros.org/rosjava (5 March 2016).

