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ABSTRACT 

Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are 

highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future 

skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to 

intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces 

(HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance 

of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several 

household task. 

Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form 

of piezoresistive pressure sensors arrays. Mobile manipulation experiments are performed with a sensorized KUKA 

youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involve 

navigation and manipulation of objects in household environments. Performance metrics include time for task 

completion and position accuracy. 
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1. INTRODUCTION 

Robotics is currently in its 3rd phase of development. The late 1970s saw the rise of unintelligent, stationary industrial 

robots. During the 1990s, progress was made in mobility, intelligence, and cooperation to develop “personal” robots in 

areas such as research, education, and entertainment [1]. Today is the generation of “ubiquitous” robots that will support 

humans in everyday life. Unlike industrial robots, future co-robots will share their working space with humans and work 

in household environments. These assistive devices do not necessarily have to be fully autonomous. It has been shown 

that a human-robot pair can outperform either a human or robot working alone [2]. 

Therefore, intuitive human-robot interfaces will play a crucial role. Non-expert user must be able to interact and 

communicate with the robot, which may involve speech, gesture, haptic displays, etc. [3]. Interaction can also be 

physical, for example a robot can learn a new task from a novice operator via kinesthetic teaching, where the user 

manually pushes and pulls the manipulator to complete a task [4]. 

Since physical contact may occur, human-robot interfaces will also play a key role in safety. Safety can be divided into a 

physical and behavior aspect [5]. When physical contact occurs, the control architecture can limit joint torques and 

velocities, and take advantage of passive compliance. There are adaptive schemes that can compensate for unknown 

parameters and disturbances while guaranteeing robust and stable control [6]. In our recent work, we validated a novel 

neuroadaptive framework that improved physical HRI [7, 8]. These methods use single F/T (force/torque) sensors to 

estimate the force applied by a human on the robot end-effector. A promising technology is robot skin, which equips the 

robot with touch and allows precise localization of multiple contact forces [9]. While whole-body, human-like skin yet 

has to be realized, there already exists pressure sensitive piezo-resistive “taxel” arrays encapsulated in flexible silicone 

substrates [10]. 
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For behavior safety, the robot takes multi-modal cues such as facial expression and body pose to determine human 

intent. This allows the robot to align its goals with the operator, plan ahead, and adjust its behavior. For example, if a 

collision is anticipated or a child interacts with the robot, the control scheme could increase its compliance. Feedback 

from the operator could also allow the robot behave more human-like, making the interface simpler to understand and 

more intuitive for the operator [11]. 

The intuitive and safe human-robot interfaces must be facilitated by multi-modal sensor data. The robot can perceive and 

understand its environment through camera images that are then processed by vision algorithms. For example, the 

OpenCV library implements several real-time computer vision functionalities, including people detection and face 

tracking [12]. Additional information can be gained from depth: RGB-D cameras such as the Microsoft Kinect or Asus 

Xtion have become de-facto standard in robotics [13]. Laser scanners usually provide 2D depth information and are 

commonly used for mobile navigation. Sonar or ultrasonic sensors are less accurate but relative inexpensive range-

finders, and have been deployed on co-robots such as Baxter to detect human presence [14]. Another alternative are 

thermal sensors, which can detect radiated heat or far-infrared rays from nearby humans. In addition to low cost, 

processing infrared data is faster compared with image processing to detect humans. 

In this paper, a standard robot platform was modified to investigate the performance of several HMIs in a household 

environment, continuing the work described in [15]. The KUKA youBot, which is commonly used in academia, was 

transitioned from the “personal” to “ubiquitous” generation of robots by performing several hardware upgrades. The 

platform was sensorized by installing a RGB-D camera for object and human detection, a laser scanner for fully and 

semi-autonomous navigation as well as collision detection, robot skin patches consisting of piezo-electric pressure 

sensors for physical interaction, and thermal sensors to detect human presence. A National Instruments roboRIO was 

added to provide additional input/output ports and a software architecture was developed to process the data. Networking 

was improved to allow remote control via a tablet interface and assisted joystick teleoperation. As such, the contribution 

of this paper is how to sensorize a standard robot platform (both hardware and software) for human-robot interfaces and 

their expected performance in a household environment. 

In the following section, we describe the robot platform and how it was upgraded to meet the HMI requirements. In 

Section 3, we discuss the sensors used for the multi-modal interfaces and the software architecture in Section 4. The 

experimental setup is presented in Section 5 and the results in Section 6. Finally, Section 7 concludes the paper and 

postulates future work. 

 

2. HARDWARE PLATFORM 

In this section we describe the robot platform and the necessary hardware sensors and interfaces needed for 

teleoperation. 

The automation company KUKA specifically developed the youBot as a research and application platform for mobile 

robotics [16]. It has a five degrees of freedoms (DOF) manipulator with a height of 655mm and a workspace of 0.513m3. 

The arm can lift a payload up to 0.5kg and has a position repeatability of 0.1mm. Grasping can be performed with a two-

finger gripper that is being powered by 2 independent stepper motors and has a range of 70 mm. 

The arm is mounted on a omni-directional base of dimension 580mm (length) by 376mm (width). The four Mecanum 

wheels allow movement in any direction (x,y) at any orientation (). It can reach velocities up to 0.8m/s and carry a 

payload of 20kg. The mobile base houses a rechargeable battery which allows a runtime of approximately 90 minutes. 

An onboard mini PC (Intel Atom Dual Core CPU, 2GB RAM) runs the Linux-based operating system Ubuntu. The 

platform components rely on EtherCAT communication with a 1ms, real-time cycle. 

A remote workstation can be connected to the robot via Ethernet cable. This is suitable for running computationally 

demanding algorithms and heavy graphics processing that would slow down the onboard PC. To create an untethered 

setup, our first upgrade consisted of mounting a wireless router (ASUS RT-N66U Dual-Band Wireless-N900 Gigabit 

Router) on top of the base. This router is connected to the onboard PC via Ethernet connection, and acts as a bridge to 

transmit data to a remote workstation (Fig. 1). This allows an operator to run and troubleshooting processes remotely, 

view and collect live data, and visualize the robot state in a graphics program. In addition, the youBot WiFi network can 

be used to connect interface devices such as tablets, phones, or laptops. 



The additional sensors for the HMI require Input/Output (I/O) ports for signal acquisition, conditioning, and networking. 

The National Instrument roboRIO is an advanced robotics controller that features several built-in ports for “I2C, SPI, 

RS232, USB, Ethernet, PWM, and relays” [17]. Released in 2015, it is part of the reconfigurable I/O (RIO) family and 

use the Xilinx Zynq chipset. It has a reconfigurable FPGA and is powered by a 667 MHz dual-core Real-Time processor. 

 

     Figure 1. Communication diagram for sensor data acquisition and wireless setup between youBot and remote workstation. 

 

3. SENSORS FOR HMI 

3.1 Laser scanner 

A laser scanning rangefinder was installed at the front side of the youBot base to detect obstacles. The sensor data can be 

used for autonomous navigation and assistive teleoperation. We used the Hokuyo URG-04LX-UG-01 model, which has 

a 240° field of view and a measurements distance of 4m [18]. 

3.2 Robot Skin 

For physical interaction, the youBot end-effector link was outfitted with four skin patches consisting of pressure sensors 

embedded in P10 polymer as shown in Fig. 2. The Tekscan Flexiforce thin-film sensors are ideal for measuring force 

between two surfaces. They are cost effective and durable with good sensor characteristics: linearity error within 3%, 

hysteresis less than 4.5%, drift less than 5%, and low temperature sensitivity (0.36% per C). The maximum response 

time is 5 sec and they handle up to 100lbs (445N). The active sensing area is 9.53mm diameter. 

The particular sensors used are piezoresistive: as force increases the resistance decreases from infinity to approximately 

300k. A voltage divider circuit with an emitter buffer was designed to measure human forces up to 50lbs (222N). The 

circuit was implemented on a custom data acquisition board (or MicroBoard), which conditions the pressure data from 

several sensors (or taxels). The results are read by the roboRIO using its analog input ports. 

        

     Figure 2. Robot skin patch placement on the KUKA youBot manipulator [16]. 



 

3.3 Thermal sensors 

Human presence can be detected by using cameras and computer vision algorithms. A simpler and more cost effective 

approach involves thermal sensors, which detect radiated heat or far-infrared rays of an object. Hence, they are not 

affected by different lightning conditions like conventional cameras and simple thresholding can be used for detection. 

The Omron’s MEMS thermal sensor (D6T-44L) consists of a MEMS thermopile sensor chip covered with a silicon lens 

[18]. The chip measures an electromotive force and an embedded circuit converts the analog signals to digital 

temperature values. In contrast to conventional pyroelectric sensors, Omron’s sensor does not measure a change in signal 

and continually detects the far-infrared ray of an object. Hence, the sensor is able able to catch a signal of a moving as 

well as stationary person. 

A custom box with three thermal sensors was mounted on the end-effector just below the two finger-gripper. The sensor 

itself outputs a 4x4 pixel array and has a view angle of 45̊ [18]. With three sensors, 4x12 pixels cover approximately 120̊ 

with some overlapping. The hardware including thermal sensors and wiring were encased in a 3D printed box as shown 

in Fig. 3. The measured values are transmitted through an I2C bus to the roboRIO. 

 

    

Figure 3. The detection area of the Omron D6T-44L [18]. The 3D printed box and circuitry for three thermal sensors. 

 

4. SOFTWARE ARCHITECTURE 

4.1 Robot Operation System 

The KUKA youBot runs the linux-based operating system Ubuntu 12.04. The platform is controlled with the open-

source Robot Operating System (ROS), a software framework originally developed by Stanford Artificial Intelligence 

Laboratory in 2007 [19]. ROS has become a de-facto standard in robotics and there is a large collection of software 

packages developed by the community. Since ROS is programming language and hardware agnostic, these packages can 

easily be re-used on different platforms. Programs are executed as independent ROS nodes and data is transmitted via 

ROS messages. This distributed architecture allows several components to run simultaneously, for example sensor data 

processing, navigation, and perception. 

In this spirit, we developed a multi-layered, ROS-based architecture to allow robot autonomy as well as user intervention 

via several HMIs such as tablet apps or pressure sensors (Fig. 4). Several stand-alone ROS packages were developed, 

with different functionalities for navigation and manipulation as described in Table 1. The program flow is determined 

by a cortex node which acts as layer between the interfaces and control modules. It contains a state machine which 

utilize ROS topics or services to calls other ROS nodes that then executes the necessary code. If anything fails, the 

cortex node runs contingency plans and is able to restart faulty ROS nodes. This also simplifies data flow making it 

easier to debug and capture data. 

 



 

     Figure 4. Software architecture. 

 

Table 1. Overview of the developed ROS packages. 

ROS package Description 

youbot_cortex Contains state machine nodes which acts as a layer between the data received from the tablet app 

and the actual arm controllers. It sends service requests to enable/disable different control modes, 

joints, and sensors. 

cortex_msgs Defines custom ROS messages and services. 

serial_io Reads data from roboRIO via a serial communications channel and publishes it to ROS topics. 

youbot_force_sensors Subscribes to force data and compute the command velocities for the base movement. KDL 

(Kinematics and Dynamics library) is used for 3D frame and vector transformations. 

youbot_ir_sensors Processes thermal sensor data (filtering and thresholding) to control the gripper. 

youbot_description Contains the youBot robot model. 

youbot_navigation Utilities for mapping, localization, and path planning. 

youbot_arm_controllers Send actual position commands to the Youbot motors using different control algorithms 

(individual and combined joint control). 

youbot_cartesian Cartesian arm controller using the motion planning software MoveIt! [20]. 

 

4.2 Tablet Interface 

A youBot tablet application was developed using ROSJava [21] to allow users to control the platform with an easy-to-

use GUI interface. Figure 5. Tablet interface for controlling the youBot.The app is split up into 3 different classes: 

ViewController, NodePublisher and the VirtualDivet. The ViewController connects the GUI interface (buttons, toggle 

buttons, switches, text) to backend code. Using ROS messages, the NodePublisher communicates user intent to the 



cortex program which then initiates the robot movement. The VirtualDivet class implements the touch-screen joystick in 

the lower right hand corner. It allows the user to move around a divet inside a circular area, where the off-center distance 

produces velocity commands between 0 and 100%. 

Figure 5 show the layout on a Nexus 10 Android tablet. The top left corner displays the tablet orientation, i.e. the pitch 

and roll from the gyroscope and the yaw relative to earth from the magnetic compass. The active control mode can either 

be individual or combined joint control. Joint control mode allows the selection of individual joints which then can be 

moved by tilting the tablet. The joint velocity is proportional to the pitch of the tablet. In combined joint control, several 

joints are moved together to move the end-effector in an arc. Joint limits prevent the user from hitting the floor or robot. 

The Cartesian position of the end-effector can be controlled with buttons in the upper right corner. Vertical Cartesian 

control moves the end-effector along the y-axis of the base frame. Finally, there are switches for activating different 

interfaces such as the thermal and pressure sensors. The grippers switch opens or closes the two-finger pincher. The base 

joystick toggle enables the virtual joystick, which moves omnidirectional base of the robot platform.  

 

 

     Figure 5. Tablet interface for controlling the youBot. 

 

4.3 RoboRio Software 

The roboRIO was programmed using the National Instruments LabVIEW. The code is executed in a real-time loop, 

where pressure sensors are read every 1ms using the analog input ports. The infrared sensors generate data every 30ms 

and use the I2C interface. After being captured, the data is relayed via USB to the youBot using the RS232 

communication protocol. Collecting sensor information and communicating with ROS are parallel tasks, made possible 

by the multicore processors on the roboRIO. This way the ROS nodes can access the sensor data at approximately the 

same rate: 1000Hz for pressure sensor and 33Hz for thermal data. 

 

5. DESCRIPTION OF EXPERIMENTS 

Experiments were conducted to test the functionality of the implemented hardware and performance of the proposed 

HMI schemes. The tasks involved object pick-and-place using the tablet interface and pressure sensors, as well as 

autonomous navigation. The primary objective was to measure the difference in completion time and accuracy of path 

trajectory for expert and novice users. Non-expert users are defined as those who had no prior experience with the tablet 

application, the robot, or its functionality. Both types of users were instructed with a brief overview of the desired tasks 

for completion for the desired motion. Non-expert users were given a brief introduction to the application and the 

buttons which control the interface position of the base and motion of the arm. To determine the trajectory error, the 

youBot was localized using odometry and laser scanner data. 

 



 

     Figure 6. Pick and place experiment on the laboratory floor. 

 
5.1 Pick and Place 

In the pick and place task, a user was asked to move several objects between waypoints with the KUKA youBot. To 

create a rigorous method of testing, the waypoints were marked on the floor as shown in Fig. 6. The path involves 

straight and diagonal movements, and the distance between each point was varied: 3.05m from point A to point B, 2.76m 

from point B to point C, 3.68m from point C to point D, 2.80m point D to point E, and 3.07m from point E to point F. 

Different interfaces were tested to compare the accuracy and completion time of physical user guidance and tablet 

teleoperation. Both expert and novice users were asked to pick up 5 objects in 6 trials. This was repeated for two types of 

interfaces: 1) teleoperation via tablet and 2) direct physical interaction (mannequin mode) via the skin patches. 

 

In Teleoperation mode, the user was required to accomplish the following tasks: 

1. Pick up initial object 

2. Transport object to waypoint 

3. Place object within 2-3 inches from waypoint marker 

4. Pick up next object 

5. Proceed to next waypoint 

6. Deliver final waypoint item into a bin 

 

The motion of the base is controlled by the divet, while the arm can be controlled by joint or Cartesian modes. The user 

can also open and close the grippers using the button located on the tablet application. 

In mannequin mode the tasks were as follows: 

1. Pick up initial object 

2. Apply a force to the desired direction pressure sensors  

3. Guide Youbot to waypoints 

4. Use the tablet to control the arm using combined joint angles. 

5. Control Gripper grasp using tablet interface 

6. Move to next waypoint and deliver current object in close proximity to next target (2-3 inches apart). 

7. Final waypoint: object in grasp must be left at final location. 

The user must press the pressure sensors to control the robot base to navigate the outlined path to grasp the desired 

objects. The user must place the object within the grasp as close as possible to the next target (2-3 inches). The reasoning 

for this method is for stating that although the system may be slower, the accuracy is more precise than that of the tablet 

interface. 

 



5.2 Path Guidance 

In addition to pick and place experiments, in which the user guided the robot by observation, we also carried out several 

user experiments using the autonomous navigation and obstacle avoidance capabilities of the youBot. For autonomous 

navigation the youBot recieved goal commands via the ROS Visualization (RViz) interface shown in Fig. 7. This 

software suite provides the user with a predefined map of the location and obstacle detection marked in white. In the 

map input via RViz the robot used the onboard LIDAR to map the current location in the room and obstacles 

encountered that might come within its path. The path taken is provided by the user input in RViz via drag and drop 

mouse commands and transmitted to the Youbot. The local Youbot controller determines whether or not an obstacle is in 

the path and will avoid the obstacle using potential field method. 

 

 

     Figure 7. RViz interface showing the location of the youBot. 

 

6. RESULTS 

6.1 Completion times  

The timed trial data for each user was tabulated below for a few expert and non-expert users. In teleoperation mode, the 

common task completion time for an experienced user was 2.5-3 minutes. However, the non-expert users took longer, 

between 5.7-7 minutes to complete the desired tasks. The time difference for both non-users and expert users required to 

operate the robot with the two different interfaces is minimal. The disparity in time between users may be attributed to 

individual skill level of the person. Experimental results and tabulated completion times are shown in Table 2 and Fig. 8. 

 
Table 2. Task completion time (in seconds) for expert and novice users of the tablet and mannequin interfaces. The mean 

and standard deviation (STD) is computed for 6 trials. 



Interface Expert user 1 Expert user 2 Novice user 1 Novice user 2 

Tablet 

175 188 395 368 

158 174 388 343 

162 159 382 340 

153 141 370 348 

148 139 372 330 

178 181 409 398 

Mean 162 164 386 355 

STD 12.0 20.7 14.7 24.7 

Mannequin 

169 176 401 382 

171 159 402 389 

173 170 393 381 

166 162 399 395 

159 160 383 346 

171 169 401 389 

Mean 168 166 397 380 

STD 5.1 6.7 7.4 17.6 
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     Figure 8. Error plot showing completion times for different users. 

6.2 Guidance accuracy 

In addition to completion times, we also recorded the location information during interaction with users. The positions of 

the robot during experiments were updated with respect to the room using the LIDAR sensor and internal odometry. 

Two expert and two non-expert users were asked to follow a taped path on the lab floor, and each experiment was 

repeated five times. The figures below summarize the trajectories obtained via manikin and tablet control, respectively. 

By general inspection of these graphs, one can infer that the manikin mode is more accurate than teleoperation with a 

tablet, and that the differences between expert and non-expert users are small. 

 



 

     Figure 9. Youbot Cartesian position plots during task execution via mannequin control showing x,y robot coordinates on lab floor 

in meters for five trials with both expert and non-expert users. 

 



 

     Figure 10. Youbot Cartesian position plots during task execution via tablet control, showing x,y robot coordinates on lab floor in 

meters for five trials with both expert and non-expert users. 

 

6.3 Autonomous Navigation 

Another set of experiments was conducted using the robot autonomous navigation controller, by pointing and clicking 

between waypoints along a trajectory. In one set of trials, the robot had to move around an obstacle placed in its path, 

while in another, the robot moved between two successive waypoints in a sharp right corner. The results depicted in the 

figure below show that in both cases, the resulting trajectories are not qualitatively more accurate than the ones obtained 

using manikin mode guidance. 

 

     

     Figure 11. Youbot Cartesian position plots during task execution via autonomous navigation, showing x,y robot coordinates on lab 

floor in meters for trials involving obstacle avoidance (left) and waypoint navigation with a sharp turn (right). 



 

7. CONCLUSION 

In this paper the Kuka youBot mobile manipulator was sensorized for user operation via a Nexus 10 tablet, physical 

interaction, and gesture.  a LIDAR unit, pressure and IR sensors consistent with robotic skin. System integration was 

accomplished through the addition of a roboRIO controller and computing infrastructure based on the Robot Operating 

System (ROS). After the HMI and sensor upgrades, the robot can be guided by users via teleoperation with a tablet, 

direct physical guidance, as well as through a point and click graphical GUI. We demonstrated basic capabilities and 

acquired data from a few users, which will pave the way for larger experimental studies in the future. Several pick and 

place tasks for objects placed on the lab floor were completed by two users familiar with the system (“experts”), and two 

users not familiar with the system (“non-expert”). The results indicate that:  

1. The physical interaction (or mannequin) guidance results in the most accurate robot trajectories for both expert 

and non-expert users. As a result, this interface is intuitive to use in precision guiding tasks. 

2. Tablet teleoperation and mannequin guidance result in similar task completion times. Expert users can complete 

pick and place manipulation and mobility tasks significantly faster than non-expert users. More research is 

necessary to reduce training time. 

3. The autonomous point and click interface had the shortest path time for traversing free and obstacle-filled 

environments, but it is less accurate than manikin guidance. This interface may be very useful if a map of the 

environment is available. 
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