
 1



Abstract— In this report I describe how to track, estimate

and predict an object using kalman filter. For this experiment a

line following robot was used, which follows a black line on a

white surface. Basic image processing technique was used to

measure the position of the robot on the image. Matlab toolbox

was used for image processing.

Index Terms—Image processing, robot, kalman filter,

matlab.

I. INTRODUCTION

ALMAN filter, named after R. E. Kalman, was developed to

solve discrete-data linear filtering problem. It is a

recursive algorithm, represent by couple of mathematical

equations, which provides better estimation and prediction of

system state than single measurement system. Although the

algorithm incorporates statistical noises and inaccuracies, the

estimation converges to the system model trajectory over time,

makes the technique very robust. It even works when the system

model is not known.

There are numerous applications for Kalman filter. It has

been the subject of extensive research and application in the

field of robotics (for motion planning and control, trajectory

optimization), autonomous and assistive navigation and signal

processing. The algorithm works in two process. Prediction step

and measurement step. In prediction step it predict the current

state(s) including uncertainties. Then in measurement step the

estimation gets corrected.

The Kalman filter addresses the general problem of trying to

estimate the state of a discrete-time controlled process that is

governed by the linear stochastic difference equation.

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑈𝑘 + 𝑤𝑘 (1)

with a measurement,

𝑧𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 (2)

Where,
𝑥 ∈ 𝑅𝑛 = system state

U = control input

This was submitted as a project report for a course, EE5322 Intelligent

Control at University of Texas at Arlington. Copyrights for components of this

w = process noise

v = measurement noise

The noises are assumed to be independent (of each other), zero

mean and with normal probability distributions,

𝑝(𝑤)~ 𝑁(0, 𝑄)

𝑝(𝑣)~ 𝑁(0, 𝑅)

where Q and R are process noise covariance and measurement

noise covariance, respectively. The equations are as follows,

Time Update

Estimation, �̂�𝑘+1
− = 𝐴�̂�𝑘 + 𝐵𝑈𝑘

Error Covariance, 𝑃𝑘+1
− = 𝐴𝑃𝑘𝐴

′ + 𝑄

Measurement Update

Kalman Gain, 𝐾 = 𝑃𝑘+1
− 𝐶′(𝐶𝑃𝑘+1

− 𝐶′ + 𝑅)−1

Error Covariance, 𝑃𝑘+1 = (𝐼 − 𝐾𝐶)𝑃𝑘+1
−

State Estimation, �̂�𝑘+1 = �̂�𝑘+1
− + 𝐾(𝑧𝑘+1 − 𝐶�̂�𝑘+1

−)

The rest of the report is organized as follows: in Sec. II I

presented 1D implementation of Kalman filter, tracking only

one axis (e.g. x-point). For 2D implementation (x and y point),

measurement part was done by image processing method. Sec.

III covers that. Sec. IV consists of the actual Kalman filter

implementation. Finally, conclusion and future work is

presented in Sec. V.

II. 1D KALMAN IMPLEMENTATION

Let’s assume we are going to track a moving object which

follows Newton’s Law of motion and we like to track position

and speed. So we can write,

 Position, 𝑃𝑘 = 𝑃𝑘−1 + 𝑉𝑘−1𝑡 +
1

2
𝑎𝑘𝑡

2

Velocity, 𝑉𝑘 = 𝑉𝑘−1 + 𝑎𝑘𝑡

If we rearrange these equations in a state form (equ (1)), then

work owned by others than the author(s) must be honored. Abstracting with

credit is permitted.

Kalman Filter for Object Tracking

Fahad Mirza (1001003682), University of Texas at Arlington

K

 2

we have,

�̂�𝑘+1 = [
𝑃
𝑉
] = [

1 𝑇
0 1

] [
𝑃𝑘−1

𝑉𝑘−1
] + [

𝑇2

2⁄

𝑇
] 𝑎𝑘 + 𝑄

As for measurement, we can write equation (2) as,

[𝑃] = [1 0] [
𝑃𝑘−1

𝑉𝑘−1
] + 𝑅

R and Q are covariance matrix for measurement and process,

respectively and can be written as,

𝑄 = [
𝜎𝑝

2 𝜎𝑝𝜎𝑣

𝜎𝑣𝜎𝑝 𝜎𝑣
2]

where σp is position variance and σv is velocity variance. This

system will take acceleration as control input and the noise will

be added to this control input. So the effect of acceleration noise

on these variances will be,

𝜎𝑝 =
𝑇2

2
× 𝐴𝑐𝑐𝑁𝑜𝑖𝑠𝑒

𝜎𝑣 = 𝑇 × 𝐴𝑐𝑐𝑁𝑜𝑖𝑠𝑒

As we are only measuring position so we will choose a

constant offset as a variance for measurement.

𝑅 = 𝜎2

Result:

Let’s assume measurement system has high standard

deviation. So the response will be look like:

Fig. 1. Actual (R) and measured (B) position Vs time

The red line represents the object’s actual position whereas

the black line is the measured position of the object. If we use

moving average with a window size of 5 to mitigate the error,

we get,

Fig. 2. Moving average output

The outcomes are better than the measured value but not good

enough. The results can be improved by increasing the window

size but, in nature moving average is computationally heavy

and might not a good fit for real-time systems. If we use Kalman

filter we get,

Fig. 3. Estimated output using Kalman Filter

The blue line represents the estimated position and it closely

follows the actual path, unlike moving average (green).

Fig. 4. Velocity Vs Time

The estimated velocity started from zero but quickly catch

up to the actual value. The figure below shows the change of

covariance (P) over time.

 3

Fig. 5. Covariance Vs Time

In the next section a description of the image processing

technique will be explained. This is used to track a moving

object, more precisely, a line following robot, from a video and

saved that as a measured position (x and y) of the robot.

III. IMAGE PROCESSING

A line following robot will follow a black line on a white

surface. The video of the moving robot is then converted into

images and then the robot’s position will be extract from those.

We know all the available colors are combination of three

colors, Red, Green and Blue (RGB). Likewise all the pixels of

an image are combination of RGB with a value range between

0-255. So if we subtract the background then we can separate

the feature (which is the robot in this case) from the image.

This technique works for static background. So during the

video recording the camera doesn’t move in order to keep the

background same. At the beginning of the video we collect the

background images without the robot. We then take an average

values of the pixels of first couple of frames to create a smooth

template. We really don’t care of the RGB values, so during the

simulation only one dimension was used. Once the robot start

to move, by subtracting the background (i.e. static color values)

we can easily extract the robot’s nominal position.

Fig. 6. The background

Figure 7 shows the raw image after taking consideration of one

dimension instead of all three (RGB).

Fig. 7. Raw image taking only one dimension

Fig. 8. Raw image with robot in it

Fig. 9. After subtracting background from Fig. 8

Figure 8 shows an image with robot in it. And figure 9 shows

how it looks after subtract the background (Fig 7). Now to

smooth and soften the image appropriately a Gaussian filter was

used. The process convolves the filter function over the image

pixel by pixel. This will get rid of any white noises that is

present on the image. Figure 10 shows the meshplot of the

Gaussian filter. Applying filter changes figure 9 into figure 11.

 4

Fig. 10. Gaussian Filter Function

Now to find the object’s position we have to threshold the

image. We are going to use histogram based thresholding. If we

use 10 equally spaced containers then we get figure 12.

Histogram result shows that anything less than -20 should the

robot. We don’t the whole robot’s structure in order to track

instead we will find the center of mass of the robot. So a middle

value between -20 and -40 was chosen. We will set as zero that

is greater than -35 and one if smaller. That will give us figure

13.

Fig. 11. After applying Gaussian filter

The robots coordinate, x and y, was evaluated as a pixel

position. So center of mass is calculated as the average values

of one’s position (fig. 13) in the array. Figure 14 shows the

center of mass of figure 13. Check out the video.

IV. 2D KALMAN IMPLEMENTATION

Like 1D implementation equations, here too I used Newton’s

Law of Motion for the robot. But this time we will have

equations for both x and y direction.

Fig. 12. Histogram of figure 11

Fig. 13. Thresholding figure 11

Fig. 14. Center of mass of figure 13

 5

[

𝑥
𝑦
�̇�
�̇�

] = [

1 0 𝑇 0
0 1 0 𝑇
1 0 1 0
0 0 0 1

] [

𝑥𝑘−1

𝑦𝑘−1

�̇�𝑘−1

�̇�𝑘−1

] +

[

𝑇2

2

𝑇2

2

𝑇
𝑇]

𝑎𝑘 + 𝑄

[
𝑥
𝑦] = [

1
0

0
1

0
0

0
0
] [

𝑥𝑘−1

𝑦𝑘−1

�̇�𝑘−1

�̇�𝑘−1

] + 𝑅

𝑅 = [
𝜎𝑥

2 0

0 𝜎𝑦
2]

𝑄 =

[

𝑇4

4
0 𝑇3

2
0

0 𝑇4

4
0 𝑇3

2

𝑇3

2
0 𝑇2 0

0 𝑇3

2 0 𝑇2]

× 𝐴𝑐𝑐𝑁𝑜𝑖𝑠𝑒

There is no direct relation between x and y so any kind of

product between σx and σy equals to zero. The data collected from

the image processing is saved in a mat file and later used in

kalman filter. There were two situations that were deliberate in

order to see how Kalman filter handle those situations. For a

brief moment of time there wasn’t any measurement data. But

Kalman filter still followed the robot, because it knows the

robots model.

Fig. 15. Tracking the robot with Kalman filtering

The green circle represents the measured data from image

processing and the red circle represents estimated data. Figure

16 shows Kalman filter can keep track of the robot in the event

of no measurement.

Fig. 16. X-axis data with missing measurement

Fig. 17. Y-axis data with missing measurement

Fig. 18. X-axis data with noise added

Fig. 19. Y-axis data with noise added

Figure 18 and 19 shows how well Kalman filter handled the

data in the event of high noise.

 6

V. CONCLUSION

In this repost I discussed how can we use Kalman filter to

track a moving object. With the help of basic image processing

technique a line follower robot was tracked. Deliberately two

situations was introduced to check the performance of the

Kalman filter and the results are shown in previous section.

Newton’s Law of Motion was used for the robot which is not

practical for real world system. For example, during the time,

when the measurement wasn’t available, if then the robot would

have taken a turn Kalman filter wouldn’t be able to track that

because there wasn’t any parameter in the model that take

account of the rotation. But for the sake of simplicity I have

kept it that way.

Considering future work, there are lots of things that can be

done to carry on forward. For instance we can start with a better

system model for the robot. Then we can work on to figure out

the actual noise covariance. Also we can extend this with a

dynamic background.

REFERENCES

[1] "Kalman Filter for Object Tracking", [Online]. Available: https://www.

youtube.com/watch?v=wq69iuFC0OE. [Accessed 12 December

2015].

