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 

Abstract— In this report I describe how to track, estimate 

and predict an object using kalman filter. For this experiment a 

line following robot was used, which follows a black line on a 

white surface. Basic image processing technique was used to 

measure the position of the robot on the image. Matlab toolbox 

was used for image processing. 

 
Index Terms—Image processing, robot, kalman filter, 

matlab. 

 

I. INTRODUCTION 

ALMAN filter, named after R. E. Kalman, was developed to 

solve discrete-data linear filtering problem. It is a 

recursive algorithm, represent by couple of mathematical 

equations, which provides better estimation and prediction of 

system state than single measurement system. Although the 

algorithm incorporates statistical noises and inaccuracies, the 

estimation converges to the system model trajectory over time, 

makes the technique very robust. It even works when the system 

model is not known. 

There are numerous applications for Kalman filter. It has 

been the subject of extensive research and application in the 

field of robotics (for motion planning and control, trajectory 

optimization), autonomous and assistive navigation and signal 

processing. The algorithm works in two process. Prediction step 

and measurement step. In prediction step it predict the current 

state(s) including uncertainties. Then in measurement step the 

estimation gets corrected.  

The Kalman filter addresses the general problem of trying to 

estimate the state of a discrete-time controlled process that is 

governed by the linear stochastic difference equation. 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑈𝑘 + 𝑤𝑘 . . . . . . . . (1) 

with a measurement, 

𝑧𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 . . . . . . . . . . . . . . . . . (2) 

Where,  
𝑥 ∈ 𝑅𝑛 = system state 

U = control input 

 
This was submitted as a project report for a course, EE5322 Intelligent 

Control at University of Texas at Arlington. Copyrights for components of this 

w = process noise  

v = measurement noise 

The noises are assumed to be independent (of each other), zero 

mean and with normal probability distributions, 

𝑝(𝑤)~ 𝑁(0, 𝑄) 

 

𝑝(𝑣)~ 𝑁(0, 𝑅) 

where Q and R are process noise covariance and measurement 

noise covariance, respectively. The equations are as follows, 

Time Update 

Estimation,  �̂�𝑘+1
− = 𝐴�̂�𝑘 + 𝐵𝑈𝑘 

Error Covariance,  𝑃𝑘+1
− = 𝐴𝑃𝑘𝐴

′ + 𝑄 

Measurement Update 

Kalman Gain, 𝐾 =  𝑃𝑘+1
− 𝐶′(𝐶𝑃𝑘+1

− 𝐶′ + 𝑅)−1 

Error Covariance,  𝑃𝑘+1 = (𝐼 − 𝐾𝐶)𝑃𝑘+1
−  

State Estimation, �̂�𝑘+1 = �̂�𝑘+1
− + 𝐾(𝑧𝑘+1 − 𝐶�̂�𝑘+1

− ) 

The rest of the report is organized as follows: in Sec. II I 

presented 1D implementation of Kalman filter, tracking only 

one axis (e.g. x-point). For 2D implementation (x and y point), 

measurement part was done by image processing method. Sec. 

III covers that. Sec. IV consists of the actual Kalman filter 

implementation. Finally, conclusion and future work is 

presented in Sec. V.  

II. 1D KALMAN IMPLEMENTATION 

Let’s assume we are going to track a moving object which 

follows Newton’s Law of motion and we like to track position 

and speed. So we can write, 

 Position,  𝑃𝑘 = 𝑃𝑘−1 + 𝑉𝑘−1𝑡 +
1

2
𝑎𝑘𝑡

2 

Velocity,  𝑉𝑘 = 𝑉𝑘−1 + 𝑎𝑘𝑡 

If we rearrange these equations in a state form (equ (1)), then 
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we have,  

�̂�𝑘+1 = [
𝑃
𝑉
] = [

1 𝑇
0 1

] [
𝑃𝑘−1

𝑉𝑘−1
] + [

𝑇2

2⁄

𝑇
] 𝑎𝑘 + 𝑄 

As for measurement, we can write equation (2) as, 

[𝑃] = [1 0] [
𝑃𝑘−1

𝑉𝑘−1
] + 𝑅 

 
R and Q are covariance matrix for measurement and process, 

respectively and can be written as, 

𝑄 = [
𝜎𝑝

2 𝜎𝑝𝜎𝑣

𝜎𝑣𝜎𝑝 𝜎𝑣
2 ] 

where σp is position variance and σv is velocity variance. This 

system will take acceleration as control input and the noise will 

be added to this control input. So the effect of acceleration noise 

on these variances will be, 

𝜎𝑝 = 
𝑇2

2
× 𝐴𝑐𝑐𝑁𝑜𝑖𝑠𝑒 

𝜎𝑣 =  𝑇 × 𝐴𝑐𝑐𝑁𝑜𝑖𝑠𝑒 

As we are only measuring position so we will choose a 

constant offset as a variance for measurement. 

𝑅 =  𝜎2 

Result: 

Let’s assume measurement system has high standard 

deviation. So the response will be look like: 

 
Fig. 1. Actual (R) and measured (B) position Vs time 

The red line represents the object’s actual position whereas 

the black line is the measured position of the object. If we use 

moving average with a window size of 5 to mitigate the error, 

we get, 

 
Fig. 2. Moving average output 

The outcomes are better than the measured value but not good 

enough. The results can be improved by increasing the window 

size but, in nature moving average is computationally heavy 

and might not a good fit for real-time systems. If we use Kalman 

filter we get, 

 
Fig. 3. Estimated output using Kalman Filter 

The blue line represents the estimated position and it closely 

follows the actual path, unlike moving average (green). 

 
Fig. 4. Velocity Vs Time 

The estimated velocity started from zero but quickly catch 

up to the actual value. The figure below shows the change of 

covariance (P) over time. 
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Fig. 5. Covariance Vs Time 

In the next section a description of the image processing 

technique will be explained. This is used to track a moving 

object, more precisely, a line following robot, from a video and 

saved that as a measured position (x and y) of the robot.  

III. IMAGE PROCESSING 

A line following robot will follow a black line on a white 

surface. The video of the moving robot is then converted into 

images and then the robot’s position will be extract from those. 

We know all the available colors are combination of three 

colors, Red, Green and Blue (RGB). Likewise all the pixels of 

an image are combination of RGB with a value range between 

0-255. So if we subtract the background then we can separate 

the feature (which is the robot in this case) from the image. 

This technique works for static background. So during the 

video recording the camera doesn’t move in order to keep the 

background same. At the beginning of the video we collect the 

background images without the robot. We then take an average 

values of the pixels of first couple of frames to create a smooth 

template. We really don’t care of the RGB values, so during the 

simulation only one dimension was used. Once the robot start 

to move, by subtracting the background (i.e. static color values) 

we can easily extract the robot’s nominal position. 

 
Fig. 6. The background 

Figure 7 shows the raw image after taking consideration of one 

dimension instead of all three (RGB). 

 
Fig. 7. Raw image taking only one dimension 

 
Fig. 8. Raw image with robot in it 

 
Fig. 9. After subtracting background from Fig. 8 

Figure 8 shows an image with robot in it. And figure 9 shows 

how it looks after subtract the background (Fig 7). Now to 

smooth and soften the image appropriately a Gaussian filter was 

used. The process convolves the filter function over the image 

pixel by pixel. This will get rid of any white noises that is 

present on the image. Figure 10 shows the meshplot of the 

Gaussian filter. Applying filter changes figure 9 into figure 11. 
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Fig. 10. Gaussian Filter Function 

Now to find the object’s position we have to threshold the 

image. We are going to use histogram based thresholding. If we 

use 10 equally spaced containers then we get figure 12. 

Histogram result shows that anything less than -20 should the 

robot. We don’t the whole robot’s structure in order to track 

instead we will find the center of mass of the robot. So a middle 

value between -20 and -40 was chosen. We will set as zero that 

is greater than -35 and one if smaller. That will give us figure 

13. 

 
Fig. 11. After applying Gaussian filter 

The robots coordinate, x and y, was evaluated as a pixel 

position. So center of mass is calculated as the average values 

of one’s position (fig. 13) in the array. Figure 14 shows the 

center of mass of figure 13. Check out the video. 

IV. 2D KALMAN IMPLEMENTATION 

Like 1D implementation equations, here too I used Newton’s 

Law of Motion for the robot. But this time we will have 

equations for both x and y direction. 

 
Fig. 12. Histogram of figure 11 

 
Fig. 13. Thresholding figure 11 

 
Fig. 14. Center of mass of figure 13 
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[

𝑥
𝑦
�̇�
�̇�

] = [

1 0 𝑇 0
0 1 0 𝑇
1 0 1 0
0 0 0 1

] [

𝑥𝑘−1

𝑦𝑘−1

�̇�𝑘−1

�̇�𝑘−1

] +

[
 
 
 
 
𝑇2

2

𝑇2

2

𝑇
𝑇]
 
 
 
 

𝑎𝑘 + 𝑄 

[
𝑥
𝑦] = [

1
0

0
1

0
0

0
0
] [

𝑥𝑘−1

𝑦𝑘−1

�̇�𝑘−1

�̇�𝑘−1

] + 𝑅 

𝑅 =  [
𝜎𝑥

2 0

0 𝜎𝑦
2] 

𝑄 =

[
 
 
 
 
 
𝑇4

4
0 𝑇3

2
0

0 𝑇4

4
0 𝑇3

2

𝑇3

2
0 𝑇2 0

0 𝑇3

2 0 𝑇2]
 
 
 
 
 

× 𝐴𝑐𝑐𝑁𝑜𝑖𝑠𝑒 

 

There is no direct relation between x and y so any kind of 

product between σx and σy equals to zero. The data collected from 

the image processing is saved in a mat file and later used in 

kalman filter. There were two situations that were deliberate in 

order to see how Kalman filter handle those situations. For a 

brief moment of time there wasn’t any measurement data. But 

Kalman filter still followed the robot, because it knows the 

robots model. 

  
Fig. 15. Tracking the robot with Kalman filtering 

The green circle represents the measured data from image 

processing and the red circle represents estimated data. Figure 

16 shows Kalman filter can keep track of the robot in the event 

of no measurement. 

 

 
Fig. 16. X-axis data with missing measurement 

 
Fig. 17. Y-axis data with missing measurement 

 
Fig. 18. X-axis data with noise added 

 
Fig. 19. Y-axis data with noise added 

Figure 18 and 19 shows how well Kalman filter handled the 

data in the event of high noise. 
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V. CONCLUSION 

In this repost I discussed how can we use Kalman filter to 

track a moving object. With the help of basic image processing 

technique a line follower robot was tracked. Deliberately two 

situations was introduced to check the performance of the 

Kalman filter and the results are shown in previous section. 

Newton’s Law of Motion was used for the robot which is not 

practical for real world system. For example, during the time, 

when the measurement wasn’t available, if then the robot would 

have taken a turn Kalman filter wouldn’t be able to track that 

because there wasn’t any parameter in the model that take 

account of the rotation. But for the sake of simplicity I have 

kept it that way. 

Considering future work, there are lots of things that can be 

done to carry on forward. For instance we can start with a better 

system model for the robot. Then we can work on to figure out 

the actual noise covariance. Also we can extend this with a 

dynamic background. 
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